CHAPTER 6 WATER SUPPLY AND DISTRIBUTION

SECTION 601 GENERAL

601.1 Scope. This chapter shall govern the materials, design and installation of water supply systems, both hot and cold, for utilization in connection with human occupancy and habitation and shall govern the installation of individual water supply systems.
601.2 Solar energy utilization. Solar energy systems used for heating potable water or using an independent medium for heating potable water shall comply with the applicable requirements of this code. The use of solar energy shall not compromise the requirements for cross connection or protection of the potable water supply system required by this code.
601.3 Existing piping used for grounding. Existing metallic water service piping used for electrical grounding shall not be replaced with nonmetallic pipe or tubing until other approved means of grounding is provided.
601.4 Tests. The potable water distribution system shall be tested in accordance with Section 312.5.

SECTION 602
 WATER REQUIRED

602.1 General. Every structure equipped with plumbing fixtures and utilized for human occupancy or habitation shall be provided with a potable supply of water in the amounts and at the pressures specified in this chapter.
602.2 Potable water required. Only potable water shall be supplied to plumbing fixtures that provide water for drinking, bathing or culinary purposes, or for the processing of food, medical or pharmaceutical products.
602.3 Individual water supply. Where a potable public water supply is not available, individual sources of potable water supply shall be utilized.
602.3.1 Sources. Deleted.
602.3.2 Minimum quantity. Deleted.

602.3.3 Water quality. Deleted.

602.3.4 Purging of system. After construction or major repair, the individual water supply system shall be purged of deleterious matter.
602.3.5 Pumps. Deleted.
602.3.5.1 Pump enclosure. Deleted.

SECTION 603 WATER SERVICE

603.1 Size of water service pipe. The water service pipe shall be sized to supply water to the structure in the quantities and at
the pressures required in this code. The minimum diameter of water service pipe shall be $3 / 4$ inch (19.1 mm).
603.2 Separation of water service and building sewer. Water service pipe and the building sewer shall be separated by 5 feet (1524 mm) of undisturbed or compacted earth.

Exceptions:

1. The required separation distance shall not apply where the bottom of the water service pipe within 5 feet (1524 mm) of the sewer is a minimum of 12 inches (305 mm) above the top of the highest point of the sewer and the pipe materials conform to Section 703.1.
2. Water service pipe is permitted to be located in the same trench with a building sewer, provided such sewer is constructed of materials listed in Table 702.2.
3. The required separation distance shall not apply where a water service pipe crosses a sewer pipe provided the water service pipe is sleeved to at least 5 feet (1524 mm) horizontally from the sewer pipe centerline, on both sides of such crossing with pipe materials listed in Table 605.3, Table 702.2 or Table 702.3.
603.2 .1 Water service near sources of pollution. Potable water service pipes shall not be located in, under or above cesspools, septic tanks, septic tank drainage fields or seepage pits (see Section 605.1 for soil and groundwater conditions).

SECTION 604 DESIGN OF BUILDING WATER DISTRIBUTION SYSTEM

604.1 General. The design of the water distribution system shall conform to accepted engineering practice. Methods utilized to determine pipe sizes shall be approved.
604.2 System interconnection. At the points of interconnection between the hot and cold water supply piping systems and the individual fixtures, appliances or devices, provisions shall be made to prevent flow between such piping systems.
604.3 Water distribution system design criteria. The water distribution system shall be designed, and pipe sizes shall be selected such that under conditions of peak demand, the capacities at the fixture supply pipe outlets shall not be less than shown in Table 604.3. The minimum flow rate and flow pressure provided to fixtures and appliances not listed in Table 604.3 shall be in accordance with the manufacturer's installation instructions.

TABLE 604.3
WATER DISTRIBUTION SYSTEM DESIGN CRITERIA REQUIRED CAPACITY AT FIXTURE SUPPLY PIPE OUTLETS

FIXTURE SUPPLY OUTLET SERVING	FLOW RATE (gpm)	FLOW PRESSURE (psi)
Bathtub	4	8
Bidet	2	4
Combination fixture	4	8
Dishwasher, residential	2.75	8
Drinking fountain	0.75	8
Laundry tray	2	8
Lavatory	3	8
Shower	2.5	8
Shower, temperature controlled	3	8
Sillcock, hose bibb	15	8
Sink, residential	35	8
Sink, service	25	
Urinal, valve	25	15
Water closet, blow out,		
flushometer valve		

For SI: 1 pound per square inch $=6.895 \mathrm{kPa}$, 1 gallon per minute $=3.785 \mathrm{~L} / \mathrm{m}$.
a. For additional requirements for flow rates and quantities, see Section 604.4.
604.4 Maximum flow and water consumption. The maximum water consumption flow rates and quantities for all plumbing fixtures and fixture fittings shall be in accordance with Table 604.4.

Exceptions:

1. Blowout design water closets [3.5 gallons (13 L) per flushing cycle].
2. Vegetable sprays.
3. Clinical sinks [4.5 gallons (17 L) per flushing cycle].
4. Service sinks.
5. Emergency showers.

TABLE 604.4
MAXIMUM FLOW RATES AND CONSUMPTION FOR PLUMBING FIXTURES AND FIXTURE FITTINGS

PLUMBING FIXTURE OR FIXTURE FITTING	MAXIMUM FLOW RATE OR QUANTITY
Lavatory, private	2.2 gpm at 60 psi
Lavatory, public, (metering)	0.25 gallon per metering cycle
Lavatory, public (other than metering)	0.5 gpm at 60 psi
Shower head ${ }^{\mathrm{a}}$	2.5 gpm at 80 psi
Sink faucet	2.2 gpm at 60 psi
Urinal	1.0 gallon per flushing cycle
Water closet	1.6 gallons per flushing cycle

For SI: 1 gallon $=3.785 \mathrm{~L}, 1$ gallon per minute $=3.785 \mathrm{~L} / \mathrm{m}$,
1 pound per square inch $=6.895 \mathrm{kPa}$.
a. A hand-held shower spray is a shower head.
b. Consumption tolerances shall be determined from referenced standards.
604.4.1 Lavatory faucets. Lavatory faucets shall be of the metering type when located in the following public restrooms:

1. in all occupancies in restrooms that have six or more lavatories.
2. in school occupancies in student-use restrooms.
3. in assembly occupancies in all customer or public-use restrooms.
604.5 Size of fixture supply. The minimum size of a fixture supply pipe shall be as shown in Table 604.5. The fixture supply pipe shall not terminate more than 72 inches (1829 mm) from the point of connection to the fixture. A reduced-size flexible water connector installed between the supply pipe and the fixture shall be of an approved type. The supply pipe shall extend to the floor or wall adjacent to the fixture. The minimum size of individual distribution lines utilized in parallel water distribution systems shall be as shown in Table 604.5.

Exception: This shall not apply to residential dishwashers or ice makers.
604.6 Variable street pressures. Where street water main pressures fluctuate, the building water distribution system shall be designed for the minimum pressure available.
604.7 Inadequate water pressure. Wherever water pressure from the street main or other source of supply is insufficient to provide flow pressures at fixture outlets as required under Table 604.3, a water pressure booster system conforming to Section 606.5 shall be installed on the building water supply system.
604.8 Water-pressure reducing valve or regulator. Where water pressure within a building exceeds $80 \mathrm{psi}(552 \mathrm{kPa})$ static, an approved water-pressure reducing valve conforming to ASSE 1003 with strainer shall be installed to reduce the pres-
sure in the building water distribution piping to 80 psi (552 kPa) static or less.

Exception: Service lines to sill cocks and outside hydrants, and main supply risers where pressure from the mains is reduced to $80 \mathrm{psi}(552 \mathrm{kPa})$ or less at individual fixtures.
604.8.1 Valve design. The pressure-reducing valve shall be designed to remain open to permit uninterrupted water flow in case of valve failure.

TABLE 604.5

FIXTURE	$\underset{\text { (inch) }}{\substack{\text { MINIMUM PIPE SIZE }}}$
Bathtubs ${ }^{\text {a }}$ ($60^{\prime \prime} \times 32^{\prime \prime}$ and smaller)	$1 / 2$
Bathtubs ${ }^{\text {a }}$ (larger than $60^{\prime \prime} \times 32^{\prime \prime}$)	1/2
Bidet	$3 / 8$
Combination sink and tray	$1 / 2$
Dishwasher, domestic ${ }^{\text {a }}$	$1 / 2$
Drinking fountain	$3 / 8$
Hose bibbs	$1 / 2$
Kitchen sink ${ }^{\text {a }}$	$1 / 2$
Laundry, 1, 2 or 3 compartments ${ }^{\text {a }}$	$1 / 2$
Lavatory	$3 / 8$
Shower, single head ${ }^{\text {a }}$	$1 / 2$
Sinks, flushing rim	$3 / 4$
Sinks, service	$1 / 2$
Urinal, flush tank	$1 / 2$
Urinal, flush valve	$3 / 4$
Wall hydrant	$1 / 2$
Water closet, flush tank	$3 / 8$
Water closet, flush valve	1
Water closet, flushometer tank	$3 / 8$
Water closet, one piece ${ }^{\text {a }}$	$1 / 2$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ foot $=304.8 \mathrm{~mm}$,
1 pound per square inch $=6.895 \mathrm{kPa}$.
a. Where the developed length of the distribution line is 60 feet or less, and the available pressure at the meter is a minimum of 35 psi , the minimum size of an individual distribution line supplied from a manifold and installed as part of a parallel water distribution system shall be one nominal tube size smaller than the sizes indicated.
604.8.2 Repair and removal. All water-pressure reducing valves, regulators and strainers shall be so constructed and installed as to permit repair or removal of parts without breaking a pipeline or removing the valve and strainer from the pipeline.
604.9 Water hammer. The flow velocity of the water distribution system shall be controlled to reduce the possibility of wa-
ter-hammer. A water-hammer arrestor shall be installed where quick-closing valves (clothes washers and dishwashers) and copper metallic piping is used. The water-hammer arrestor shall not be required on any valves where plastic pipe is used for water distribution piping. Water-hammer arrestors shall be installed in accordance with the manufacturer's specifications. Water-hammer arrestors shall conform to ASSE 1010.
604.10 Parallel water distribution system manifolds. Hot water and cold water manifolds installed with parallel connected individual distribution lines to each fixture or fixture fitting shall be designed in accordance with Sections 604.10.1 through 604.10.3.
604.10.1 Manifold sizing. Hot water and cold water manifolds shall be sized in accordance with Table 604.10.1. The total gallons per minute is the demand of all outlets supplied.
\(\left.$$
\begin{array}{l}\text { TABLE 604.10.1 } \\
\begin{array}{c}\text { MANIFOLD SIZING }\end{array} \\
\hline \begin{array}{c}\text { NOMINAL SIZE } \\
\text { INTERNAL DIAMETER } \\
\text { (inches) }\end{array} \\
\hline 1 / 2\end{array}
$$ \begin{array}{c}Melocity at 4 feet

per second\end{array}\right)\)| Velocity at 8 feet |
| :---: |
| per second |$|$

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ gallon per minute $=3.785 \mathrm{~L} / \mathrm{m}$, 1 foot per second $=0.305 \mathrm{~m} / \mathrm{s}$.
604.10.2 Valves. Individual fixture shutoff valves installed at the manifold shall be identified as to the fixture being supplied.
604.10.3 Access. Access shall be provided to manifolds.
604.11 Individual pressure balancing in-line valves for individual fixture fittings. Where individual pressure balancing in-line valves for individual fixture fittings are installed, such valves shall comply with ASSE 1066. Such valves shall be installed in an accessible location and shall not be utilized alone as a substitute for the balanced pressure, thermostatic or combination shower valves required in Section 424.3.

SECTION 605
 MATERIALS, JOINTS AND CONNECTIONS

605.1 Soil and ground water. The installation of a water service or water distribution pipe shall be prohibited in soil and ground water contaminated with solvents, fuels, organic compounds or other detrimental materials causing permeation, corrosion, degradation or structural failure of the piping material. Where detrimental conditions are suspected, a chemical analysis of the soil and ground water conditions shall be required to ascertain the acceptability of the water service or water distribution piping material for the specific installation. Where det-
rimental conditions exist, approved alternative materials or routing shall be required.
605.2 Lead content of water supply pipe and fittings. Pipe and pipe fittings, including valves and faucets, utilized in the water supply system shall have a maximum of 8 -percent lead content.
605.3 Water service pipe. Water service pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.3. All water service pipe or tubing, installed under-
ground and outside of the structure, shall have a minimum working pressure rating of $160 \mathrm{psi}(1100 \mathrm{kPa})$ at $73.4^{\circ} \mathrm{F}\left(23^{\circ} \mathrm{C}\right)$. Where the water pressure exceeds $160 \mathrm{psi}(1100 \mathrm{kPa})$, piping material shall have a minimum rated working pressure equal to the highest available pressure. All ductile iron water pipe shall be cement mortar lined in accordance with AWWA C104.
605.3.1 Dual check-valve-type backflow preventer. Where a dual check-valve backflow preventer is installed on the water supply system, it shall comply with ASSE 1024.

TABLE 605.3
WATER SERVICE PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic pipe	ASTM D 1527; ASTM D 2282
Asbestos-cement pipe	ASTM C 296
Brass pipe	ASTM B 43
Chlorinated polyvinyl chloride (CPVC) plastic pipe	ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6
Copper or copper-alloy pipe	AS; ASTM B 302
Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)	ASTM F 876; ASTM F 877; CSA-B137.5
Cross-linked polyethylene (PEX) plastic tubing	ASTM F 1281; CAN/CSA B137.10M
Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe	ASTM A 53
Ductile iron water pipe	ASTM D 2662; ASTM D 2666; ASTM D 3309; CAN3-B137.8M
Galvanized steel pipe	ASTM D 2239; CSA-B137.1
Polybutylene (PB) plastic pipe and tubing	ASTM D 2737; CSA B137.1
Polyethylene (PE) plastic pipe	ASTM F 1282 CAN/CSA-B137.9
Polyethylene (PE) plastic tubing	ASTM D 1785; ASTM D 2241; ASTM D 2672; CSA-B137.3
Polyethylene/aluminum/polethylene (PE-AL-PE) pipe	ASTM A 312; ASTM A 778
Polyvinyl chloride (PVC) plastic pipe	
Stainless steel pipe (Type 304/304L)	ASTM A 312; ASTM A 778
Stainless steel pipe (Type 316/316L)	

TABLE 605.4
WATER DISTRIBUTION PIPE

MATERIAL	STANDARD
Brass pipe	ASTM B 43
Chlorinated polyvinyl chloride (CPVC) plastic pipe and tubing	ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 447
Cross-linked polyethylene (PEX) plastic tubing	ASTM F 877; CSA-B137.5
Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe	ASTM F 1281; CAN/CSA-B137.10M
Galvanized steel pipe	ASTM A 53
Polybutylene (PB) plastic pipe and tubing	ASTM D 3309; CAN3-B137.8M
Polyethylene/Aluminum/Polyethylene (PE-AL-PE) composite pipe	ASTM F 1282
Stainless steel pipe (Type 304/304L)	ASTM A 312; ASTM A 778
Stainless steel pipe (Type 316/316L)	ASTM A 312; ASTM A 778

605.4 Water distribution pipe. Water distribution pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.4. All water distribution pipe and tubing shall have a minimum pressure rating of $100 \mathrm{psi}(690 \mathrm{kPa})$ at $180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$.
605.5 Fittings. Pipe fittings shall be approved for installation with the piping material installed and shall conform to the respective pipe standards or one of the standards listed in Table 605.5. All pipe fittings utilized in water supply systems shall also conform to NSF 61. The fittings shall not have ledges, shoulders or reductions capable of retarding or obstructing flow in the piping. Ductile and gray iron pipe fittings shall be cement mortar lined in accordance with AWWA C104.
605.5.1 Mechanically formed tee fittings. Mechanically extracted outlets shall have a height not less than three times the thickness of the branch tube wall.
605.5.1.1 Full flow assurance. Branch tubes shall not restrict the flow in the run tube. A dimple/depth stop shall be formed in the branch tube to ensure that penetration into the collar is of the correct depth. For inspection purposes, a second dimple shall be placed 0.25 inch (6.4 mm) above the first dimple. Dimples shall be aligned with the tube run.
605.5.1.2 Brazed joints. Mechanically formed tee fittings shall be brazed in accordance with Section 605.14.1.

605.6 Flexible water connectors. Deleted.

605.7 Valves. All valves shall be of the approved type and compatible with the type of piping material installed in the system.
605.8 Manufactured pipe nipples. Manufactured pipe nipples shall conform to one of the standards listed in Table 605.8.

TABLE 605.8
MANUFACTURED PIPE NIPPLES

MATERIAL	STANDARD
Brass-, copper-, chromium-plated	ASTM B 687
Steel	ASTM A 733

605.9 Prohibited joints and connections. The following types of joints and connections shall be prohibited:

1. Cement or concrete joints.
2. Joints made with fittings not approved for the specific installation.
3. Solvent-cement joints between different types of plastic pipe.
4. Saddle-type fittings.
605.10 ABS plastic. Joints between ABS plastic pipe or fittings shall comply with Sections 605.10.1 through 605.10.3.
605.10.1 Mechanical joints. Mechanical joints on water pipes shall be made with an elastomeric seal conforming to ASTM D 3139. Mechanical joints shall only be installed in underground systems, unless otherwise approved. Joints shall be installed only in accordance with the manufacturer's instructions.
605.10.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. Solvent cement that conforms to ASTM D 2235 shall be applied to all joint surfaces. The joint shall be made while the cement is wet. Joints shall be

TABLE 605.5 PIPE FITTINGS	
MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic	ASTM D 2468
Cast-iron	ASME B16.4; ASME B16.12
Chlorinated polyvinyl chloride (CPVC) plastic	ASTM F 437; ASTM F 438; ASTM F 439
Copper or copper alloy	ASME B16.15; ASME B16.18; ASME B16.22; ASME B16.23; ASME B16.26; ASME B16.29
Fittings for cross-linked polyethylene (PEX) plastic tubing	ASTM F 1807, ASTM F 1960, ASTM F 2080
Gray iron and ductile iron	AWWA C110; AWWA C153
Malleable iron	ASME B16.3
$\begin{aligned} & \text { Metal (brass) insert fittings for } \\ & \text { Polyethylene/Aluminum/Polyethylene (PE-AL-PE) and Cross-linked } \\ & \text { Polyethylene/Aluminum/Polyethylene (PEX-AL-PEX) } \\ & \hline \end{aligned}$	ASTM F 1974
Polyethylene (PE) plastic	ASTM D 2609
Polyvinyl chloride (PVC) plastic	ASTM D 2464; ASTM D 2466; ASTM D 2467; CSA-B137.2
Stainless steel (Type 304/304L)	ASTM A 312; ASTM A 778
Stainless steel (Type 316/316L)	ASTM A 312; ASTM A 778
Steel	ASME B16.9; ASME B16.11; ASME B16.28

made in accordance with ASTM D 2235. Solvent-cement joints shall be permitted above or below ground.
605.10.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe. Approved thread lubricant or tape shall be applied on the male threads only.
605.11 Asbestos-cement. Joints between asbestos-cement pipe or fittings shall be made with a sleeve coupling of the same composition as the pipe, sealed with an elastomeric ring conforming to ASTM D 1869.
605.12 Brass. Joints between brass pipe or fittings shall comply with Sections 605.12.1 through 605.12.4.
605.12.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
605.12.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.12.3 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.
605.12.4 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.
605.13 Gray iron and ductile iron joints. Joints for gray and ductile iron pipe and fittings shall comply with AWWA C111 and shall be installed in accordance with the manufacturer's installation instructions.
605.14 Copper pipe. Joints between copper or copper-alloy pipe or fittings shall comply with Sections 605.14.1 through 605.14.5.
605.14.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
605.14.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.14.3 Soldered joints. Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solder and fluxes. "Lead free" shall mean a chemical composition equal to or less than 0.2-percent lead.
605.14.4 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.
605.14.5 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.
605.15 Copper tubing. Joints between copper or copper-alloy tubing or fittings shall comply with Sections 605.15.1 through 605.15.4.
605.15.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
605.15.2 Flared joints. Flared joints for water pipe shall be made by a tool designed for that operation.
605.15.3 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.15.4 Soldered joints. Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solders and fluxes. "Lead free" shall mean a chemical composition equal to or less than 0.2 -percent lead.
605.16 CPVC plastic. Joints between CPVC plastic pipe or fittings shall comply with Sections 605.16.1 through 605.16.3.
605.16.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.16.2 Solvent cementing. Joint surfaces shall be clean and free from moisture, and an approved primer shall be applied. Solvent cement, orange in color and conforming to ASTM F 493, shall be applied to all joint surfaces. The joint shall be made while the cement is wet, and in accordance with ASTM D 2846 or ASTM F 493. Solvent-cement joints shall be permitted above or below ground.

Exception: A primer is not required where all of the following conditions apply:

1. The solvent cement used is third-party certified as conforming to ASTM F 493.
2. The solvent cement used is yellow in color.
3. The solvent cement is used only for joining $\frac{1}{2}$ inch (12.7 mm) through 2 inch (51 mm) diameter CPVC pipe and fittings.
4. The CPVC pipe and fittings are manufactured in accordance with ASTM D 2846.
605.16.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.
605.17 Cross-linked polyethylene plastic. Joints between cross-linked polyethylene plastic tubing or fittings shall comply with Sections 605.17.1 and 605.17.2.
605.17.1 Flared joints. Flared pipe ends shall be made by a tool designed for that operation.
605.17.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions. Fittings for cross-linked polyethylene (PEX) plastic tubing as described in ASTM F 1807, ASTM F 1960 and ASTM F

2080 shall be installed in accordance with the manufacturer's instructions.
605.18 Steel. Joints between galvanized steel pipe or fittings shall comply with Sections 605.18.1 and 605.18.2.
605.18.1 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.
605.18.2 Mechanical joints. Joints shall be made with an approved elastomeric seal. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.19 Polybutylene plastic. Joints between polybutylene plastic pipe and tubing or fittings shall comply with Sections 605.19.1 through 605.19.3.
605.19.1 Flared joints. Flared pipe ends shall be made by a tool designed for that operation.
605.19.2 Heat-fusion joints. Joints shall be of the socket-fusion or butt-fusion type. Joint surfaces shall be clean and free from moisture. All joint surfaces shall be heated to melt temperature and joined. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM D 2657, ASTM D 3309 or CAN3-B137.8M.
605.19.3 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions. Metallic lock rings employed with insert fittings as described in ASTM D 3309 or CAN3-B137.8M shall be installed in accordance with the manufacturer's instructions.
605.20 Polyethylene plastic. Joints between polyethylene plastic pipe and tubing or fittings shall comply with Sections 605.20.1 through 605.20.4.
605.20.1 Flared joints. Flared joints shall be permitted where so indicated by the pipe manufacturer. Flared joints shall be made by a tool designed for that operation.
605.20.2 Heat-fusion joints. Joint surfaces shall be clean and free from moisture. All joint surfaces shall be heated to melt temperature and joined. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM D 2657.
605.20.3 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.20.4 Installation. Polyethylene pipe shall be cut square, with a cutter designed for plastic pipe. Except where joined by heat fusion, pipe ends shall be chamfered to remove sharp edges. Kinked pipe shall not be installed. The minimum pipe bending radius shall not be less than 30 pipe diameters, or the minimum coil radius, whichever is greater. Piping shall not be bent beyond straightening of the curvature of the coil. Bends shall not be permitted within 10 pipe diameters of any fitting or valve. Stiffener inserts installed with compression-type couplings and fittings shall not extend beyond the clamp or nut of the coupling or fitting.
605.21 PVC plastic. Joints between PVC plastic pipe or fittings shall comply with Sections 605.21.1 through 605.21.3.
605.21.1 Mechanical joints. Mechanical joints on water pipe shall be made with an elastomeric seal conforming to

ASTM D 3139. Mechanical joints shall not be installed in above-ground systems unless otherwise approved. Joints shall be installed in accordance with the manufacturer's instructions.
605.21.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. A purple primer that conforms to ASTM F 656 shall be applied. Solvent cement not purple in color and conforming to ASTM D 2564 or CSA-B137.3 shall be applied to all joint surfaces. The joint shall be made while the cement is wet and shall be in accordance with ASTM D 2855. Solvent-cement joints shall be permitted above or below ground.
605.21.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.
605.22 Stainless steel. Joints between stainless steel pipe and fittings shall comply with Sections 605.22.1 and 605.22.2.
605.22.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer's instructions.
605.22.2 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded autogenously or with an approved filler metal as referenced in ASTM A 312.
605.23 Joints between different materials. Joints between different piping materials shall be made with a mechanical joint of the compression or mechanical-sealing type, or as permitted in Sections 605.23.1, 605.23.2 and 605.23.3. Connectors or adapters shall have an elastomeric seal conforming to ASTM D 1869 or ASTM F 477. Joints shall be installed in accordance with the manufacturer's instructions.
605.23.1 Copper or copper-alloy tubing to galvanized steel pipe. Joints between copper or copper-alloy tubing and galvanized steel pipe shall be made with a brass fitting or dielectric fitting. The copper tubing shall be soldered to the fitting in an approved manner, and the fitting shall be screwed to the threaded pipe.
605.23.2 Plastic pipe or tubing to other piping material. Joints between different grades of plastic pipe or between plastic pipe and other piping material shall be made with an approved adapter fitting.
605.23.3 Stainless steel. Joints between stainless steel and different piping materials shall be made with a mechanical joint of the compression or mechanical sealing type or a dielectric fitting.

SECTION 606 INSTALLATION OF THE BUILDING WATER DISTRIBUTION SYSTEM

606.1 Location of full-open valves. Full-open valves shall be installed in the following locations:

1. Deleted.
2. A full-open valve shall be located either outside the building within 5 feet (1524 mm) of the foundation wall in a readily accessible valve box, in the crawl space within 3 feet (914 mm) of the crawl space access door or within the building in a location where it may be accessed without the use of a ladder or a tool.
3. Deleted.
4. On the base of every water riser pipe in occupancies other than multiple-family residential occupancies that are two stories or less in height and in one- and two-family residential occupancies.
5. On the top of every water down-feed pipe in occupancies other than one- and two-family residential occupancies.
6. On the entrance to every water supply pipe to a dwelling unit, except where supplying a single fixture equipped with individual stops.
7. On the water supply pipe to a gravity or pressurized water tank.
8. On the water supply pipe to every water heater.
606.2 Location of shutoff valves. Shutoff valves shall be installed within 3 feet (914 mm) on the same floor in the following locations:
9. On the fixture supply to each plumbing fixture other than bathtubs and showers in one- and two-family residential occupancies, and other than in individual guestrooms that are provided with unit shutoff valves in hotels, motels, boarding houses and similar occupancies.
10. Deleted.
11. On the water supply pipe to each appliance or mechanical equipment.
606.2.1 Buildings other than dwellings or dwelling units. Each supply branch line serving more than one fixture shall have a shutoff valve installed so as to isolate all fixtures and all pieces of equipment supplied by the branch line. The shutoff valve shall be labeled and located as close to the connection to the supply main and riser as practical.
606.3 Access to valves. Access shall be provided to all required full-open valves and shutoff valves.
606.4 Valve identification. Service valves shall be identified. All other valves installed in locations that are not adjacent to the fixture or appliance shall be identified, indicating the fixture or appliance served.
606.5 Water pressure booster systems. Water pressure booster systems shall be provided as required by Sections 606.5.1 through 606.5.10.
606.5.1 Water pressure booster systems required. Where the water pressure in the public water main or individual water supply system is insufficient to supply the minimum pressures and quantities specified in this code, the supply shall be supplemented by an elevated water tank, a hydropneumatic pressure booster system or a water pressure booster pump installed in accordance with Section 606.5.5.
606.5.2 Support. All water supply tanks shall be supported in accordance with the International Building Code.
606.5.3 Covers. All water supply tanks shall be covered to keep out unauthorized persons, dirt and vermin. The covers of gravity tanks shall be vented with a return bend vent pipe with an area not less than the area of the down-feed riser pipe, and the vent shall be screened with a corrosion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m).
606.5.4 Overflows for water supply tanks. Each gravity or suction water supply tank shall be provided with an overflow with a diameter not less than that shown in Table 606.5.4. The overflow outlet shall discharge above and within not less than 6 inches (152 mm) of a roof or roof drain, floor or floor drain, or over an open water-supplied fixture. The overflow outlet shall be covered with a corro-sion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m) and by 0.25 -inch (6.4 mm) hardware cloth or shall terminate in a horizontal angle seat check valve. Drainage from overflow pipes shall be directed so as not to freeze on roof walks.

TABLE 606.5.4
SIZES FOR OVERFLOW PIPES FOR WATER SUPPLY TANKS

MAXIMUM CAPACITY OF WATER SUPPLY LINE TO TANK (gpm)	DIAMETER OF OVERFLOW PIPE (inches)
$0-50$	2
$50-150$	$2 \frac{1}{2}$
$150-200$	3
$200-400$	4
$400-700$	5
$700-1,000$	6
Over 1,000	8

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ gallon per minute $=3.785 \mathrm{~L} / \mathrm{m}$.
606.5.5 Low-pressure cutoff required on booster pumps. A low-pressure cutoff shall be installed on all booster pumps in a water pressure booster system to prevent creation of a vacuum or negative pressure on the suction side of the pump when a positive pressure of $10 \mathrm{psi}(68.94 \mathrm{kPa})$ or less occurs on the suction side of the pump.
606.5.6 Potable water inlet control and location. Potable water inlets to gravity tanks shall be controlled by a fill valve or other automatic supply valve installed so as to prevent the tank from overflowing. The inlet shall be terminated so as to provide an air gap not less than 4 inches (102 mm) above the overflow.
606.5.7 Tank drain pipes. A valved pipe shall be provided at the lowest point of each tank to permit emptying of the tank. The tank drain pipe shall discharge as required for overflow pipes and shall not be smaller in size than specified in Table 606.5.7.

TABLE 606.5.7
SIZE OF DRAIN PIPES FOR WATER TANKS

TANK CAPACITY (gallons)	DRAIN PIPE (inches)
Up to 750	1
751 to 1,500	$1^{1 / 2} 2$
1,501 to 3,000	2
3,001 to 5,000	$2^{1 / 2}$
5,000 to 7,500	3
Over 7,500	4

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ gallon $=3.785 \mathrm{~L}$.
606.5.8 Prohibited location of potable supply tanks. Potable water gravity tanks or manholes of potable water pressure tanks shall not be located directly under any soil or waste piping or any source of contamination.
606.5.9 Pressure tanks, vacuum relief. All water pressure tanks shall be provided with a vacuum relief valve at the top of the tank that will operate up to a maximum water pressure of $200 \mathrm{psi}(1380 \mathrm{kPa})$ and up to a maximum temperature of $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$. The minimum size of such vacuum relief valve shall be 0.50 inch (12.7 mm).

Exception: This section shall not apply to pressurized captive air diaphragm/bladder tanks.
606.5.10 Pressure relief for tanks. Every pressure tank in a hydropneumatic pressure booster system shall be protected with a pressure relief valve. The pressure relief valve shall be set at a maximum pressure equal to the rating of the tank. The relief valve shall be installed on the supply pipe to the tank or on the tank. The relief valve shall discharge by gravity to a safe place of disposal.
606.6 Water supply system test. Upon completion of a section of or the entire water supply system, the system, or portion completed, shall be tested in accordance with Section 312.

SECTION 607
 HOT WATER SUPPLY SYSTEM

607.1 Where required. Each dwelling unit shall be provided with an adequate source of hot water for each family unit to meet minimum basic requirements for health, sanitation and personal hygiene. Central water-heating facilities shall be accessible for emergency maintenance without entering any individual apartment or living unit when supplying hot water to that unit. In other occupied structures hot water may be supplied to all plumbing fixtures and equipment utilized for bathing, washing, culinary purposes, cleansing, laundry or building maintenance.

607.2 Hot water supply temperature maintenance. Deleted.

607.2.1 Piping insulation. In other than one- and two-family dwellings, circulating hot water system piping shall be insulated in accordance with the International Energy Conservation Code.
[E] 607.2.2 Hot water system controls. Automatic circulating hot water system pumps or heat trace shall be ar-
ranged to be conveniently turned off, automatically or manually, when the hot water system is not in operation.
607.2.3 Recirculating pump. Deleted.
607.3 Thermal expansion control. A means of controlling increased pressure caused by thermal expansion shall be provided where required in accordance with Sections 607.3.1 and 607.3.2.
607.3.1 Pressure-reducing valve. For water service system sizes up to and including 2 inches (51 mm), a device for controlling pressure shall be installed where, because of thermal expansion, the pressure on the downstream side of a pressure-reducing valve exceeds the pressure-reducing valve setting.
607.3.2 Backflow prevention device or check valve. Where a backflow prevention device, check valve or other device is installed on a water supply system utilizing storage water heating equipment such that thermal expansion causes an increase in pressure, a device for controlling pressure shall be installed.
607.4 Flow of hot water to fixtures. Fixture fittings, faucets and diverters shall be installed and adjusted so that the flow of hot water from the fittings corresponds to the left-hand side of the fixture fitting.

Exception: Shower and tub/shower mixing valves conforming to ASSE 1016, where the flow of hot water corresponds to the markings on the device.

SECTION 608

PROTECTION OF POTABLE WATER SUPPLY

608.1 General. A potable water supply system shall be designed, installed and maintained in such a manner so as to prevent contamination from nonpotable liquids, solids or gases being introduced into the potable water supply through cross-connections or any other piping connections to the system. Backflow preventer applications shall conform to Table 608.1, except as specifically stated in Sections 608.2 through 608.16.9.
608.2 Plumbing fixtures. The supply lines or fittings for every plumbing fixture shall be installed so as to prevent backflow.
608.3 Devices, appurtenances, appliances and apparatus. All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that connect to the water supply system, shall be provided with protection against backflow and contamination of the water supply system. Water pumps, filters, softeners, tanks and all other appliances and devices that handle or treat potable water shall be protected against contamination.
608.3.1 Special equipment, water supply protection. The water supply for hospital fixtures shall be protected against backflow with a reduced pressure principle backflow preventer, an atmospheric or spill-proof vacuum breaker, or an air gap. Vacuum breakers for bedpan washer hoses shall not be located less than 5 feet (1524 mm) above the floor. Vacuum breakers for hose connections in health care or lab-

TABLE 608.1
APPLICATION OF BACKFLOW PREVENTERS

DEVICE	DEGREE OF HAZARD ${ }^{\text {a }}$	APPLICATION ${ }^{\text {b }}$	APPLICABLE STANDARDS
Air gap	High or low hazard	Backsiphonage or backpressure	ASME A112.1.2
Air gap fittings for use with plumbing fixtures, appliances and appurtenances	High or low hazard	Backsiphonage or backpressure	ASME A112.1.3
Antisiphon-type fill valves for gravity water closet flush tanks	High hazard	Backsiphonage only	ASSE 1002, CSA-B125
Barometric loop	High or low hazard	Backsiphonage only	(See Section 608.13.4)
Reduced pressure principle backflow preventer and reduced pressure principle fire protection backflow preventer	High or low hazard	Backpressure or backsiphonage Sizes $3 /{ }^{3}{ }^{\prime \prime}-16^{\prime \prime}$	ASSE 1013, AWWA C511, CAN/CSA B64.4
Reduced pressure detector fire protection backflow prevention assemblies	High or low hazard	Backsiphonage or backpressure (Fire sprinkler systems)	ASSE 1047
Double check backflow prevention assembly and double check fire protection backflow prevention assembly	Low hazard	Backpressure or backsiphonage Sizes $3 / 8{ }^{\prime \prime}-16^{\prime \prime}$	ASSE 1015, AWWA C510
Double check detector fire protection backflow prevention assemblies	Low hazard	Backpressure or backsiphonage (Fire sprinkler systems) Sizes 2" - 16"	ASSE 1048
Dual-check-valve-type backflow preventer	Low hazard	Backpressure or backsiphonage Sizes $\frac{1}{4} 4^{\prime \prime}-1^{\prime \prime}$	ASSE 1024
Backflow preventer with intermediate atmospheric vents	Low hazard	Backpressure or backsiphonage Sizes $1 / 4{ }^{\prime \prime}-3 /{ }_{4}{ }^{\prime \prime}$	ASSE 1012, CAN/CSA-B64.3
Backflow preventer for carbonated beverage machines	Low hazard	Backpressure or backsiphonage Sizes $1 / 4^{\prime \prime}-3 / 8^{\prime \prime}$	ASSE 1022
Pipe-applied atmospheric-type vacuum breaker	High or low hazard	Backsiphonage only Sizes ${ }^{1}{ }_{4}^{\prime \prime}-4^{\prime \prime}$	ASSE 1001, CAN/CSA-B64.1.1
Pressure vacuum breaker assembly	High or low hazard	Backsiphonage only Sizes $1 / 2$ " $-2^{\prime \prime}$	ASSE 1020
Hose-connection vacuum breaker	High or low hazard	Low head backpressure or backsiphonage Sizes $1 / 2^{\prime \prime}, 3 / 4$ ", $1^{\prime \prime}$	ASSE 1011, CAN/CSA-B64.2
Vacuum breaker wall hydrants, frost-resistant, automatic draining type	High or low hazard	Low head backpressure or backsiphonage Sizes ${ }^{3} /{ }^{\prime \prime}$, $1^{\prime \prime}$	ASSE 1019, CAN/CSA-B64.2.2
Laboratory faucet backflow preventer	High or low hazard	Low head backpressure and backsiphonage	ASSE 1035, CSA B64.7
Hose connection backflow preventer	High or low hazard	Low head backpressure, rated working pressure backpressure or backsiphonage Sizes $1 / 2^{\prime \prime}-1^{\prime \prime}$	ASSE 1052
Spillproof vacuum breaker	High or low hazard	Backsiphonage only Sizes $1 / 4$ " 2 "	ASSE 1056

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. Low hazard-See Pollution (Section 202). High hazard-See Contamination (Section 202).
b. See Backpressure (Section 202).

See Backpressure, low head (Section 202).
See Backsiphonage (Section 202).
oratory areas shall not be less than 6 feet $(1829 \mathrm{~mm})$ above the floor.
608.4 Water service piping. Water service piping shall be protected in accordance with Sections 603.2 and 603.2.1.
608.5 Chemicals and other substances. Chemicals and other substances that produce either toxic conditions, taste, odor or discoloration in a potable water system shall not be introduced into, or utilized in, such systems.
608.6 Cross-connection control. Cross connections shall be prohibited, except where approved protective devices are installed.
608.6.1 Private water supplies. Cross connections between a private water supply and a potable public supply shall be prohibited.
608.7 Stop-and-waste valves prohibited. Combination stop-and-waste valves or cocks shall not be installed underground.
608.8 Identification of potable and nonpotable water. In all buildings where two or more water distribution systems, one potable water and the other nonpotable water, are installed, each system shall be identified either by color marking or metal tags in accordance with Sections 608.8.1 through 608.8.3.
608.8.1 Information. Pipe identification shall include the contents of the piping system and an arrow indicating the direction of flow. Hazardous piping systems shall also contain information addressing the nature of the hazard. Pipe identification shall be repeated at maximum intervals of 25 feet $(7620 \mathrm{~mm})$ and at each point where the piping passes through a wall, floor or roof. Lettering shall be readily observable within the room or space the piping is located.
608.8.2 Color. The color of the pipe identification shall be discernable and consistent throughout the building. See Table 608.8.2 for color identification.

TABLE 608.8.2
IDENTIFICATION COLOR

SYSTEM	BACKGROUND LABEL COLOR	LETTERING
Potable Water	Green	White
Fire protection systems	Red	White
All other nonpotable sytems	$\underline{Y e l l o w ~}$	Black

608.8.3 Size. The size of the background color field and lettering shall comply with Table 608.8.3.
TABLE 608.8.3
SIZE OF PIPE IDENTIFICATION

PIPE DIAMETER (inches)	LENGTH BACKGROUND COLOR FIELD (inches)	SIZE OF LETERS (inches)
$3 / 4$ to $1 \frac{1}{4}$	8	0.5
$1 \frac{1}{2}$ to 2	8	0.75
$2 \frac{1}{2}$ to 6	12	1.25
8 to 10	24	2.5
over 10	32	3.5

For SI: 1 inch $=25.4 \mathrm{~mm}$.
608.9 Reutilization prohibited. Water utilized for the cooling of equipment or other processes shall not be returned to the potable water system. Such water shall be discharged into a drainage system through an air gap or shall be utilized for nonpotable purposes.
608.10 Reuse of piping. Piping that has been utilized for any purpose other than conveying potable water shall not be utilized for conveying potable water.
608.11 Painting of water tanks. The interior surface of a potable water tank shall not be lined, painted or repaired with any material that changes the taste, odor, color or potability of the water supply when the tank is placed in, or returned to, service.
608.12 Pumps and other appliances. Water pumps, filters, softeners, tanks and all other devices that handle or treat potable water shall be protected against contamination.
608.13 Backflow protection. Means of protection against backflow shall be provided in accordance with Sections 608.13.1 through 608.13.9.
608.13.1 Air gap. The minimum required air gap shall be measured vertically from the lowest end of a potable water outlet to the flood level rim of the fixture or receptacle into which such potable water outlet discharges. Air gaps shall comply with ASME A112.1.2 and air gap fittings shall comply with ASME A112.1.3.
608.13.2 Reduced pressure principle backflow preventers. Reduced pressure principle backflow preventers shall conform to ASSE 1013, AWWA C511 or CAN/CSA-B64.3. Reduced pressure detector assembly backflow preventers shall conform to ASSE 1047. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.
608.13.3 Backflow preventer with intermediate atmospheric vent. Backflow preventers with intermediate atmospheric vents shall conform to ASSE 1012 or CAN/ CSA-B64.3. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.
608.13.4 Barometric loop. Barometric loops shall precede the point of connection and shall extend vertically to a
height of 35 feet (10668 mm). A barometric loop shall only be utilized as an atmospheric-type or pressure-type vacuum breaker.
608.13.5 Pressure-type vacuum breakers. Pressure-type vacuum breakers shall conform to ASSE 1020 and spillproof vacuum breakers shall comply with ASSE 1056. These devices are designed for installation under continuous pressure conditions when the critical level is installed at the required height. Pressure-type vacuum breakers shall not be installed in locations where spillage could cause damage to the structure.
608.13.6 Atmospheric-type vacuum breakers. Pipe-applied atmospheric-type vacuum breakers shall conform to ASSE 1001 or CAN/CSA-B64.1.1. Hose-connection vacuum breakers shall conform to ASSE 1011, ASSE 1019, ASSE 1035, ASSE 1052, CAN/CSA-B64.2, CAN/CSAB64.2.2 or CSA B64.7. These devices shall operate under normal atmospheric pressure when the critical level is installed at the required height.
608.13.7 Double check-valve assemblies. Double checkvalve assemblies shall conform to ASSE 1015 or AWWA C510. Double-detector check-valve assemblies shall conform to ASSE 1048. These devices shall be capable of operating under continuous pressure conditions.
608.13.8 Spillproof vacuum breakers. Spillproof vacuum breakers (SVB) shall conform to ASSE 1056. These devices are designed for installation under continuous-pressure conditions when the critical level is installed at the required height.
608.13.9 Chemical dispenser backflow devices. Backflow devices for chemical dispensers shall comply with ASSE 1055 or shall be equipped with an air gap fitting.
608.14 Location of backflow preventers. Access shall be provided to backflow preventers as specified by the installation instructions of the approved manufacturer.
608.14.1 Outdoor enclosures for backflow prevention devices. Outdoor enclosures for backflow prevention devices shall comply with ASSE 1060.
608.15 Protection of potable water outlets. All potable water openings and outlets shall be protected against backflow in accordance with Section 608.15.1, 608.15.2, 608.15.3, 608.15.4, 608.15.4.1, 608.15.4.2 or 608.15.4.3.
608.15.1 Protection by air gap. Openings and outlets shall be protected by an air gap between the opening and the fixture flood level rim as specified in Table 608.15.1. Openings and outlets equipped for hose connection shall be protected by means other than an air gap.
608.15.2 Protection by a reduced pressure principle backflow preventer. Openings and outlets shall be protected by a reduced pressure principle backflow preventer.
608.15.3 Protection by a backflow preventer with intermediate atmospheric vent. Openings and outlets shall be protected by a backflow preventer with an intermediate atmospheric vent.
608.15.4 Protection by a vacuum breaker. Openings and outlets shall be protected by atmospheric-type or pres-sure-type vacuum breakers. The critical level of the vacuum breaker shall be set a minimum of 6 inches $(152 \mathrm{~mm})$ above the flood level rim of the fixture or device. Fill valves shall be set in accordance with Section 425.3.1. Vacuum breakers shall not be installed under exhaust hoods or similar locations that will contain toxic fumes or vapors. Pipe-applied vacuum breakers shall be installed not less than 6 inches $(152 \mathrm{~mm})$ above the flood level rim of the fixture, receptor or device served.
608.15.4.1 Deck-mounted and integral vacuum breakers. Approved deck-mounted or equip-ment-mounted vacuum breakers and faucets with integral atmospheric or spillproof vacuum breakers shall be installed in accordance with the manufacturer's instructions and the requirements for labeling with the critical

TABLE 608.15.1
MINIMUM REQUIRED AIR GAPS

FIXTURE	MINIMUM AIR GAP	
	Away from a walla ${ }^{\text {a }}$ (inches)	Close to a wall (inches)
Lavatories and other fixtures with effective opening not greater than $\frac{1}{2}$ inch in diameter	1	$1{ }^{1 / 2}$
Sink, laundry trays, gooseneck back faucets and other fixtures with effective openings not greater than $3 / 4$ inch in diameter	1.5	2.5
Over-rim bath fillers and other fixtures with effective openings not greater than 1 inch in diameter	2	3
Drinking water fountains, single orifice not greater than $7 / 16$ inch in diameter or multiple orifices with a total area of 0.150 square inch (area of circle $7 / 16$ inch in diameter)	1	$11 / 2$
Effective openings greater than 1 inch	Two times the diameter of the effective opening	Three times the diameter of the effective opening

For SI: 1 inch $=25.4 \mathrm{~mm}$.
a. Applicable where walls or obstructions are spaced from the nearest inside-edge of the spout opening a distance greater than three times the diameter of the effective opening for a single wall, or a distance greater than four times the diameter of the effective opening for two intersecting walls.
level not less than 1 inch (25 mm) above the flood level rim.
608.15.4.2 Hose connections. Sillcocks, hose bibbs, wall hydrants and other openings with a hose connection shall be protected by an atmospheric-type or pres-sure-type vacuum breaker or a permanently attached hose connection vacuum breaker.

Exceptions:

1. This section shall not apply to water heater and boiler drain valves that are provided with hose connection threads and that are intended only for tank or vessel draining.
2. This section shall not apply to water supply valves intended for connection of clothes washing machines where backflow prevention is otherwise provided or is integral with the machine.
608.15.4.3 Fittings with hose-connected outlets. Plumbing fixture fittings with hose-connected outlets shall have backflow protection in compliance with ASME A112.18.3.
608.16 Connections to the potable water system. Connections to the potable water system shall conform to Sections 608.16.1 through 608.16.9.
608.16.1 Beverage dispensers. The water supply connection to carbonated beverage dispensers shall be protected against backflow by a backflow preventer conforming to ASSE 1022 or by an air gap. The backflow preventer device and the piping downstream therefrom shall not be affected by carbon dioxide gas.
608.16.2 Connections to boilers. The potable supply to the boiler shall be equipped with a backflow preventer with an intermediate atmospheric vent complying with ASSE 1012 or CAN/CSA B64.3. Where conditioning chemicals are introduced into the system, the potable water connection shall be protected by an air gap or a reduced pressure principle backflow preventer, complying with ASSE 1013, CAN/CSA B64.4 or AWWA C511.
608.16.3 Heat exchangers. Heat exchangers utilizing an essentially toxic transfer fluid shall be separated from the potable water by double-wall construction. An air gap open to the atmosphere shall be provided between the two walls. Heat exchangers utilizing an essentially nontoxic transfer fluid shall be permitted to be of single-wall construction.
608.16.4 Connections to automatic fire sprinkler systems and standpipe systems. The potable water supply to automatic fire sprinkler and standpipe systems shall be protected against backflow by a double check-valve assembly or a reduced pressure principle backflow preventer.

Exceptions:

1. Where systems are installed as a portion of the water distribution system in accordance with the requirements of this code and are not provided with a fire department connection, isolation of the water supply system shall not be required.
2. Isolation of the water distribution system is not required for deluge, preaction or dry pipe systems.
608.16.4.1 Additives or nonpotable source. Where systems under continuous pressure contain chemical additives or antifreeze, or where systems are connected to a nonpotable secondary water supply, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer. Where chemical additives or antifreeze are added to only a portion of an automatic fire sprinkler or standpipe system, the reduced pressure principle backflow preventer shall be permitted to be located so as to isolate that portion of the system. Where systems are not under continuous pressure, the potable water supply shall be protected against backflow by an air gap or a pipe applied atmospheric vacuum breaker conforming to ASSE 1001or CAN/CSA B64.1.1.
608.16.5 Connections to lawn irrigation systems. The potable water supply to lawn irrigation systems shall be protected against backflow by an atmospheric-type vacuum breaker, a pressure-type vacuum breaker or a reduced pressure principle backflow preventer. A valve shall not be installed downstream from an atmospheric vacuum breaker. Where chemicals are introduced into the system, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer.
608.16.6 Connections subject to backpressure. Where a potable water connection is made to a nonpotable line, fixture, tank, vat, pump or other equipment subject to back-pressure, the potable water connection shall be protected by a reduced pressure principle backflow preventer.
608.16.7 Chemical dispensers. Where chemical dispensers connect to the potable water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6, 608.13.8 or 608.13.9.
608.16.8 Portable cleaning equipment. Where the portable cleaning equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.7 or 608.13.8.
608.16.9 Dental pump equipment. Where dental pumping equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6 or 608.13.8.
608.17 Protection of individual water supplies. Deleted.

TABLE 608.17.1
DISTANCE FROM CONTAMINATION TO PRIVATE WATER SUPPLIES AND PUMP SUCTION LINES
Deleted.

SECTION 609

 HEALTH CARE PLUMBING609.1 Scope. This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to the requirements of this section in addition to the other requirements of this code. The provisions of this section shall ap-
ply to the special devices and equipment installed and maintained in the following occupancies: nursing homes, homes for the aged, orphanages, infirmaries, first aid stations, psychiatric facilities, clinics, professional offices of dentists and doctors, mortuaries, educational facilities, surgery, dentistry, research and testing laboratories, establishments manufacturing pharmaceutical drugs and medicines, and other structures with similar apparatus and equipment classified as plumbing.
609.2 Water service. All hospitals shall have two water service pipes installed in such a manner so as to minimize the potential for an interruption of the supply of water in the event of a water main or water service pipe failure.
609.3 Hot water. Hot water shall be provided to supply all of the hospital fixture, kitchen and laundry requirements. Special fixtures and equipment shall have hot water supplied at a temperature specified by the manufacturer. The hot water system shall be installed in accordance with Section 607.
609.4 Vacuum breaker installation. Vacuum breakers shall be installed a minimum of 6 inches (152 mm) above the flood level rim of the fixture or device in accordance with Section 608. The flood level rim of hose connections shall be the maximum height at which any hose is utilized.
609.5 Prohibited water closet and clinical sink supply. Jetor water-supplied orifices, except those supplied by the flush connections, shall not be located in or connected with a water closet bowl or clinical sink. This section shall not prohibit an approved bidet installation.
609.6 Clinical, hydrotherapeutic and radiological equipment. All clinical, hydrotherapeutic, radiological or any equipment that is supplied with water or that discharges to the waste system shall conform to the requirements of this section and Section 608.
609.7 Condensate drain trap seal. A water supply shall be provided for cleaning, flushing and resealing the condensate trap, and the trap shall discharge through an air gap in accordance with Section 608.
609.8 Valve leakage diverter. Each water sterilizer filled with water through directly connected piping shall be equipped with an approved leakage diverter or bleed line on the water supply control valve to indicate and conduct any leakage of unsterile water away from the sterile zone.

SECTION 610
 PURGING OF POTABLE WATER SYSTEM

610.1 General. Permitted new or repaired potable water systems shall be purged of deleterious matter prior to utilization.

SECTION 611

DRINKING WATER TREATMENT UNITS
611.1 Design. Drinking water treatment units shall meet the requirements of NSF 42, NSF 44, NSF 53 or NSF 62.
611.2 Reverse osmosis systems. The discharge from a reverse osmosis drinking water treatment unit shall enter the drainage
system through an air gap or an air gap device that meets the requirements of NSF 58.
611.3 Connection tubing. The tubing to and from drinking water treatment units shall be of a size and material as recommended by the manufacturer. The tubing shall comply with NSF 14, NSF 42, NSF 44, NSF 53, NSF 58 or NSF 61.

SECTION 612 SOLAR SYSTEMS

612.1 Solar systems. The construction, installation, alterations and repair of systems, equipment and appliances intended to utilize solar energy for space heating or cooling, domestic hot water heating, swimming pool heating or process heating shall be in accordance with the International Mechanical Code.

SECTION 613
 TEMPERATURE CONTROL DEVICES AND VALVES

613.1 Temperature-actuated mixing valves. Tempera-ture-actuated mixing valves, which are installed to reduce water temperatures to defined limits, shall comply with ASSE 1016 or ASSE 1017.

